M89 SERIES

Crystal Oscillator | 5.0V | CMOS | 5x7mm Gull Wing Leads* | Military Grade

Features
- Ruggedized Design
- High-Shock & Vibration
- Industry Standard Package
- ECCN - EAR 99
- Shortest Lead Time
- Smallest Hi-Rel Package
- Radiation Tolerant to 30 krad TID
- Best Stability Over Temperature
- Customer Support & Service
- See M88 Datasheet for 3.3V Operation
- Robust, Rugged, High Shock Crystal Support (3 or 4 point Crystal Mount)

Mechanical SPECIFICATIONS

- **Dimensions:**
 - Width: 5x7 mm
 - **Gull Wing Leaded** Ceramic SMD Package
 - **Pad 1, ESD Symbol**

Electrical SPECIFICATIONS

<table>
<thead>
<tr>
<th>CODE</th>
<th>CODE</th>
<th>Frequency Range (MHz)</th>
<th>Supply Current @ 5.0V ±10% (mA)</th>
<th>Rise/Fall Time (ns)</th>
<th>Symmetry min/max (%)</th>
<th>Aging per year max/1ppm</th>
<th>Stability over Operating Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>05</td>
<td>0.25 to 0.9</td>
<td>6</td>
<td>5</td>
<td>48/52 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
<tr>
<td>06</td>
<td>07</td>
<td>1.0 to 7.9</td>
<td>10</td>
<td>5</td>
<td>48/52 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
<tr>
<td>08</td>
<td>09</td>
<td>8.0 to 15.9</td>
<td>14</td>
<td>4</td>
<td>45/55 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>16.0 to 49.9</td>
<td>27</td>
<td>3</td>
<td>45/55 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>50.0 to 64.9</td>
<td>35</td>
<td>2</td>
<td>40/60 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>65.0 to 84.9</td>
<td>40</td>
<td>2</td>
<td>40/60 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>85.0 to 99.9</td>
<td>45</td>
<td>2</td>
<td>40/60 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>100.0 to 120.0</td>
<td>50</td>
<td>2</td>
<td>40/60 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
</tbody>
</table>

How To ORDER

```
M89 B 06 A - 1M000000
```

Part Number
- FMI YYWW
- s/n

Pin Number Function
1. No Connect or TriState Enable
2. Ground (case)
3. Output
4. Supply V (Vcc)

Standard PIN CONFIGURATION

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No Connect or TriState Enable</td>
</tr>
<tr>
<td>2</td>
<td>Ground (case)</td>
</tr>
<tr>
<td>3</td>
<td>Output</td>
</tr>
<tr>
<td>4</td>
<td>Supply V (Vcc)</td>
</tr>
</tbody>
</table>

Output Frequency

- **5 ppm per year**
- **10 ppm per year**

Stability over Operating Temperature

- **-55ºC to +150ºC (ppm)**
- **-55ºC to +125ºC (ppm)**
- **-55ºC to +105ºC (ppm)**
- **-20ºC to +70ºC (ppm)**

CMOS Output, 15 pF Load

- Output Voltage - Logic "0" is Vcc x 0.1 Vdc
- Output Voltage - Logic "1" is Vcc x 0.9 Vdc
- Start-up Time: 10 msec max

How To ORDER

```
M89 B 06 A - 1M000000
```

FREQUENCY MANAGEMENT

15302 Bolsa Chica Street
Huntington Beach, CA 92649

Ph. 714 373 8100
Fx. 714 373 8700

Sales@FrequencyManagement.com

Features
- Ruggedized Design
- High-Shock & Vibration
- Industry Standard Package
- ECCN - EAR 99
- Shortest Lead Time
- Smallest Hi-Rel Package
- Radiation Tolerant to 30 krad TID
- Best Stability Over Temperature
- Customer Support & Service
- See M88 Datasheet for 3.3V Operation
- Robust, Rugged, High Shock Crystal Support (3 or 4 point Crystal Mount)

Mechanical SPECIFICATIONS

- **Dimensions:**
 - Width: 5x7 mm
 - **Gull Wing Leaded** Ceramic SMD Package
 - **Pad 1, ESD Symbol**

Electrical SPECIFICATIONS

<table>
<thead>
<tr>
<th>CODE</th>
<th>CODE</th>
<th>Frequency Range (MHz)</th>
<th>Supply Current @ 5.0V ±10% (mA)</th>
<th>Rise/Fall Time (ns)</th>
<th>Symmetry min/max (%)</th>
<th>Aging per year max/1ppm</th>
<th>Stability over Operating Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>05</td>
<td>0.25 to 0.9</td>
<td>6</td>
<td>5</td>
<td>48/52 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
<tr>
<td>06</td>
<td>07</td>
<td>1.0 to 7.9</td>
<td>10</td>
<td>5</td>
<td>48/52 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
<tr>
<td>08</td>
<td>09</td>
<td>8.0 to 15.9</td>
<td>14</td>
<td>4</td>
<td>45/55 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>16.0 to 49.9</td>
<td>27</td>
<td>3</td>
<td>45/55 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>50.0 to 64.9</td>
<td>35</td>
<td>2</td>
<td>40/60 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>65.0 to 84.9</td>
<td>40</td>
<td>2</td>
<td>40/60 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>85.0 to 99.9</td>
<td>45</td>
<td>2</td>
<td>40/60 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>100.0 to 120.0</td>
<td>50</td>
<td>2</td>
<td>40/60 ±5</td>
<td>±70</td>
<td>±50 ±40 ±25</td>
</tr>
</tbody>
</table>

How To ORDER

```
M89 B 06 A - 1M000000
```

Part Number
- FMI YYWW
- s/n

Pin Number Function
1. No Connect or TriState Enable
2. Ground (case)
3. Output
4. Supply V (Vcc)

Output Frequency

- **5 ppm per year**
- **10 ppm per year**

Stability over Operating Temperature

- **-55ºC to +150ºC (ppm)**
- **-55ºC to +125ºC (ppm)**
- **-55ºC to +105ºC (ppm)**
- **-20ºC to +70ºC (ppm)**

CMOS Output, 15 pF Load

- Output Voltage - Logic "0" is Vcc x 0.1 Vdc
- Output Voltage - Logic "1" is Vcc x 0.9 Vdc
- Start-up Time: 10 msec max
Screening, B & C LEVELS

<table>
<thead>
<tr>
<th>Screening</th>
<th>Method</th>
<th>Condition</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Destruct Bond Pull</td>
<td>MIL-STD-883, Method 2023</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Internal Visual</td>
<td>MIL-STD-883, Method 2017</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Stabilization (Vacuum Bake)</td>
<td>MIL-STD-883, Method 1008</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Temperature Cycling</td>
<td>MIL-STD-883, Method 1010</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Constant Accelereration</td>
<td>MIL-STD-883, Method 2001</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Seal: Fine Leak</td>
<td>MIL-STD-883, Method 1014</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Seal: Gross Leak</td>
<td>MIL-STD-202, Method 112</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Electrical Test</td>
<td>Functional Test Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marking & Serialization</td>
<td>MIL-STD-1285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Test</td>
<td>Nominal Vcc & Extremes and Nominal Temp and Extremes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burn-in (no-load)</td>
<td>+125°C, Nominal Supply Voltage and Burn-in load, 48 hours min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burn-in (load)</td>
<td>+125°C, Nominal Supply Voltage and Burn-in load, 160 hours min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Visual & Mechanical</td>
<td>MIL-STD-883, Method 2009.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final Electrical Test

a) Input current, output frequency, output waveform, are tested at \(+23°C \pm 2°C \)
b) Frequency stability is tested over the specified temperature range; at both extremes and at \(+25°C \) at a minimum of 5 temperature increments

note: Recording of test data is by lot # and then serial #

Environmental COMPLIANCE

<table>
<thead>
<tr>
<th>Environmental</th>
<th>Specification</th>
<th>Method</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration – Sine</td>
<td>MIL-STD-202</td>
<td>Method 204</td>
<td>Condition D</td>
</tr>
<tr>
<td>Vibration – Random</td>
<td>MIL-STD-202</td>
<td>Method 214</td>
<td>Condition 1</td>
</tr>
<tr>
<td>Shock</td>
<td>MIL-STD-202</td>
<td>Method 213</td>
<td>Condition I</td>
</tr>
<tr>
<td>Seal Test</td>
<td>MIL-STD-883</td>
<td>Method 1014</td>
<td>Condition A1</td>
</tr>
<tr>
<td>Seal Test</td>
<td>MIL-STD-883</td>
<td>Method 1014</td>
<td>Condition C1</td>
</tr>
<tr>
<td>Temperature Cycling</td>
<td>MIL-STD-883</td>
<td>Method 1010</td>
<td>Condition B</td>
</tr>
<tr>
<td>Constant Acceleration</td>
<td>MIL-STD-883</td>
<td>Method 2001</td>
<td>Condition A</td>
</tr>
<tr>
<td>Thermal Shock</td>
<td>MIL-STD-202</td>
<td>Method 107</td>
<td>Condition B</td>
</tr>
</tbody>
</table>

Military Reference Specifications

- MIL-PRF-55310: Oscillators, Crystal Controlled, General Specification For
- MIL-PRF-38534: Hybrid Microcircuits, General Specification For
- MIL-STD-1866: Electrostatic Discharge Control Program for Protection of Electrical and Electronic Parts, Assemblies and Equipment

Materials

1. Package Materials:
 - Ceramic, Alumina 90% min
2. External Lead Plating Material:
 - Gold plated Kovar, 0.15 µm (60 µ inch) min, over 2.0 µm (80 µ inch) min Nickel

Products for Space Applications

Contact us for assistance with your specification. We will provide you with the technical support and the required documentation.

Issue2_07272016